Spontaneous generation of mammalian prions.
نویسندگان
چکیده
Prions are transmissible agents that cause lethal neurodegeneration in humans and other mammals. Prions bind avidly to metal surfaces such as steel wires and, when surface-bound, can initiate infection of brain or cultured cells with remarkable efficiency. While investigating the properties of metal-bound prions by using the scrapie cell assay to measure infectivity, we observed, at low frequency, positive assay results in control groups in which metal wires had been coated with uninfected mouse brain homogenate. This phenomenon proved to be reproducible in rigorous and exhaustive control experiments designed to exclude prion contamination. The infectivity generated in cell culture could be readily transferred to mice and had strain characteristics distinct from the mouse-adapted prion strains used in the laboratory. The apparent "spontaneous generation" of prions from normal brain tissue could result if the metal surface, possibly with bound cofactors, catalyzed de novo formation of prions from normal cellular prion protein. Alternatively, if prions were naturally present in the brain at levels not detectable by conventional methods, metal surfaces might concentrate them to the extent that they become quantifiable by the scrapie cell assay.
منابع مشابه
Spontaneous Generation of Prion Infectivity in Fatal Familial Insomnia Knockin Mice
A crucial tenet of the prion hypothesis is that misfolding of the prion protein (PrP) induced by mutations associated with familial prion disease is, in an otherwise normal mammalian brain, sufficient to generate the infectious agent. Yet this has never been demonstrated. We engineered knockin mice to express a PrP mutation associated with a distinct human prion disease, fatal familial insomnia...
متن کاملSpontaneous generation of anchorless prions in transgenic mice.
Some prion protein mutations create anchorless molecules that cause Gerstmann-Sträussler-Scheinker (GSS) disease. To model GSS, we generated transgenic mice expressing cellular prion protein (PrP(C)) lacking the glycosylphosphatidyl inositol (GPI) anchor, denoted PrP(ΔGPI). Mice overexpressing PrP(ΔGPI) developed a late-onset, spontaneous neurologic dysfunction characterized by widespread amylo...
متن کاملSteered molecular dynamics studies reveal different unfolding pathways of prions from mammalian and non-mammalian speciesw
Prion diseases are associated with an abnormal conformational transition involving the prion protein and are known to affect mammals. Here, the different mechanical behaviour of two mammalian, human (HuPrP) and Syrian hamster (ShaPrP), and two non-mammalian, chicken (ChPrP) and turtle (TuPrP), prions was assessed by steered molecular dynamics simulations performed on the globular domains of the...
متن کاملBirth of a Prion: Spontaneous Generation Revisited
The proposal that the transmissible agent in prion diseases can be a conformationally altered host protein that multiplies by autocatalytic conversion has gained wide acceptance. Recent work shows that the agent, the prion, can be replicated in a cell-free system, that it can be generated de novo, and that the strain-specific properties of prions are encoded by conformational variations of the ...
متن کاملSpontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein.
Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 32 شماره
صفحات -
تاریخ انتشار 2010